Answer:
False.
Explanation:
False. The pressure is above pressure at critical point (22.064 MPa.), the limit where pressure can prevent boiling.
Answer:
» Microsoft word ( word processing )
» Microsoft powerpoint ( presentation )
» Microsoft access ( database mamagement )
» Microsoft excel ( spread sheets )
Explanation:

Answer:
471 days
Explanation:
Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons
As,
1 gallon = 0.133 cubic feet (cf)
Therefore,
Capacity of Carvins Cove water reservoir in cf = 3.2 x 10˄9 x 0.133
= 4.28 x 10˄8
Applying Mass balance i.e
Accumulation = Mass In - Mass out (Eq. 01)
Here
Mass In = 0.5 cfs
Mass out = 11 cfs
Putting values in (Eq. 01)
Accumulation = 0.5 - 11
= - 10.5 cfs
Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.
Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600
= 37,800
Converting depletion of reservoir in cubic feet per day = 37, 800 x 24
= 907,200
i.e. 907,200 cubic feet volume is being depleted in days = 1 day
1 cubic feet volume is being depleted in days = 1/907,200 day
4.28 x 10˄8 cubic feet volume will deplete in days = (4.28 x 10˄8) x 1/907,200
= 471 Days.
Hence in case of continuous drought reservoir will last for 471 days before dry-up.
Answer:
a. true
Explanation:
Firstly, we need to understand what takes places during the compression process in a quasi-equilibrium process. A quasi-equilibrium process is a process in during which the system remains very close to a state of equilibrium at all times. When a compression process is quasi-equilibrium, the work done during the compression is returned to the surroundings during expansion, no exchange of heat, and then the system and the surroundings return to their initial states. Thus a reversible process.
While for a non-quasi equilibrium process, it takes more work to move the piston against this high-pressure region.