1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
6

Applying the Entropy Balance: Closed Systems Five kg of carbon dioxide (CO2) gas undergoes a process in a well-insulated piston–

cylinder assembly from 2 bar, 280 K to 20 bar, 520 K. If the carbon dioxide behaves as an ideal gas, determine the amount of entropy produced, in kJ/K, assuming (a) constant specific heats with c= = 0.939 kJ/kg · K. (b) variable specific heats. Compare the results of parts (a) and (b).
Engineering
1 answer:
Mrrafil [7]3 years ago
7 0

Answer:

a) the amount of energy produced in kJ/K is 0.73145 kJ/K

b) the amount of energy produced in kJ/K is 0.68975 kJ/K

The value for entropy production obtained using constant specific heats is approximately 6% higher than the value obtained when accounting explicitly for the variation in specific heats.

Explanation:

Draw the T-s diagram.

a)

C_p = 0.939 kJ/kg.K , m = 5 kg , T₂ = 520 K , T₁ = 280

R = [8.314 kJ / 44.01 kg.K] , P₂ = 20 bar , P₁ = 2 bar

Δs = m[c_p ln(\frac{T_2}{T_1}) - Rln(\frac{P_2}{P_1})]

Substitute all parameters in the equation

Δs = 5[(0.939) ln(\frac{520}{280}) - (\frac{8.314}{44.01})ln(\frac{20}{2})]

Δs = 5 kg × 0.14629 kJ/kg.K

    = 0.73145 kJ/K

b)

Δs = m[\frac{s^0(T_2) - s^0(T_1)}{M} - Rln(\frac{P_2}{P_1})]

Where T₁ = 280 K , s°(T₁) = 211.376 kJ/kmol.K

           T₂ = 520 K , s°(T₂) = 236.575 kJ/kmol.K

R = [8.314 kJ / 44.01 kg.K] , M = 44.01 kg.K , P₂ = 20 bar , P₁ = 2 bar

Δs = 5[\frac{236.575 - 211.376}{44.01} - (\frac{8.314}{44.01})ln(\frac{20}{2})]

    = 5 kg (0.13795 kJ/kg.K)

    = 0.68975 kJ/K

The value for entropy production obtained using constant specific heats is approximately 6% higher than the value obtained when accounting explicitly for the variation in specific heats.

You might be interested in
A gas has an initial volume o.25m^3, and absolute pressure 100kPa. Its initial temperature is 290k. The gas is compressed into a
dezoksy [38]

Answer:

<h2>698.3Kpa</h2>

Explanation:

Step one:

given data

V1=0.25m^3

T1=290k

P1=100kPa

V2=0.5m^2

T2=405k

P2=? final pressure

Step two:

The combined gas equation is given as

P1V1/T1=P2V2/T2

Substituting we have

(100*0.25)/290=P2*0.05/405

25/290=0.5P2/405

0.086=0.05P2/405

cross multiply

0.086*405=0.05P2

34.9=0.05P2

divide both sides by 0.05

P2=34.9/0.05

P2=698.3Kpa

<u>Therefore the new pressure is 698.3Kpa when the gas is compressed</u>

5 0
2 years ago
Will this airplane stay in the air a long time? Why or why not?
iogann1982 [59]
Do you have a picture of the question?
7 0
3 years ago
1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
Vesna [10]
I DONT KNOW OKAY UGHHH
6 0
3 years ago
How are speed and acceleration related
erica [24]
R = distance

dr/dt speed or with a direction, velocity

d(dr/dt)/dt = the time derivative of the velocity is called acceleration.

Speed is a scalar. Acceleration is a vector.
6 0
3 years ago
Read 2 more answers
Consider a resistor made of pure silicon with a cross-sectional area pf 0.5 μm2, and a length of 50 μm. What is the resistance o
lukranit [14]

Answer: 24 pA

Explanation:

As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.

Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵  Ω  cm.

The resistance R of a given resistor, is expressed by the following formula:

R = ρ L / A

Replacing by the values for resistivity, L and A, we have

R = 2.1. 10⁵ Ω  cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2

R = 2.1. 10¹¹ Ω

Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:

I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA

7 0
3 years ago
Other questions:
  • List irreversibilities
    11·1 answer
  • A cylindrical specimen of this alloy 12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm. On
    5·1 answer
  • The decay of a radioactive isotope can be theoretically modeled with the following equation, where C0 is the initial amount of t
    6·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • 8. Which of the following is a characteristic of no-till farming?
    8·1 answer
  • My t!t$ feel sore and heavyy
    13·1 answer
  • Roku internet service providet​
    11·1 answer
  • Which of the following units of measurement is denoted by a single apostrophe mark (')?
    6·1 answer
  • using the following data for july, calculate the cost of goods manufactured: beginning finished goods inventory 150,475. Ending
    5·1 answer
  • A rigid vessel with a volume of 10 m3 contains a water-vapor mixture at 400 kPa. If the quality is 60 percent, find the mass. Th
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!