Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
Answer:
a)
, b)
, c) 
Explanation:
A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:
Mass Balance

Energy Balance

Specific volumes and enthalpies are obtained from property tables for steam:
Inlet (Superheated Steam)


Outlet (Liquid-Vapor Mix)


a) The mass flow rate of the steam is:



b) The exit velocity of steam is:




c) The power output of the steam turbine is:



Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution
Answer:
a) 23.89 < -25.84 Ω
b) 31.38 < 25.84 A
c) 0.9323 leading
Explanation:
A) Calculate the load Impedance
current on load side = 0.75 p.u
power factor angle = 25.84
= 0.75 < 25.84°
attached below is the remaining part of the solution
<u>B) Find the input current on the primary side in real units </u>
load current in primary = 31.38 < 25.84 A
<u>C) find the input power factor </u>
power factor = 0.9323 leading
<em></em>
<em>attached below is the detailed solution </em>
Answer:
0.2 m/s
Explanation:
The velocity of a point on the edge of a disk rotating disk can be calculated as:

Where
is the angular velocity and r the radius of the disk. This leads to: