Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K
Answer:

Explanation:
In this case, we have to start with the <u>chemical reaction</u>:

So, if we start with <u>10 mol of cyclohexanol</u> (
) we will obtain 10 mol of cyclohexanol (
). So, we can calculate the grams of cyclohexanol if we<u> calculate the molar mass:</u>

With this value we can calculate the grams:

Now, we have as a product 500 mL of
. If we use the <u>density value</u> (0.811 g/mL). We can calculate the grams of product:

Finally, with these values we can calculate the <u>yield</u>:
%= (405.5/820)*100 = 49.45 %
See figure 1
I hope it helps!
Answer:
Option D is correct.
Explanation:
Compared to a sample of helium at STP, the same sample of helium at a higher temperature and a lower pressure because any gas at a higher temperature and a lower pressure will behaves like an ideal gas. for eg.
nitrogen at STP show its behavior as an ideal gas.
When pressure of a gas increased & temperature is decreased then the gas does not follow ideal gas law.
Therefore option D is correct.
Answer:
46.0g of Iron are produced
Explanation:
Based on the chemical reaction:
FeO(l) + Mg(l) → Fe(l) + MgO(s)
<em>1 mole of Iron (II) oxide reacts per mole of Mg to produce 1 mole of iron</em>
<em />
To solve this question we need to convert each mass of reactant to moles using its respectives molar masses in order to find limitng reactant. Moles of limiting reactant = Moles of iron produced:
<em>Moles FeO (Molar mass: 71.85g/mol):</em>
80.0g * (1mol / 71.85g) = 1.11moles FeO
<em>Moles Mg (Molar mass: 24.305g/mol)</em>
20.0g * (1mol / 24.305g) = 0.823 moles Mg
As moles of Mg < Moles FeO, Mg is limiting reactant and the moles of Fe are 0.823 moles.
The mass of Iron produced is:
0.823 moles Fe * (55.845g/mol) =
46.0g of Iron are produced