Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
Density * Volume = Mass
Now we substitute the values in.
19.3 g/cm^3 + 20 cm^3 = 386 g
Mass = 386 g
Answer:
151.1J
Explanation:
Given parameters:
Mass of iron = 6.21g
Initial temperature of iron = 25°C
Final temperature of iron = 79.8°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat require to cause this temperature can be determined using the expression below;
H = m c (T₂ - T₁)
H is the amount of heat
m is the mass
c is the specific heat capacity
T is the temperature
Specific heat capacity of iron 0.444J/g°C
Insert the parameters and solve;
H = 6.21 x 0.444 x (79.8 - 25)
H = 151.1J
Answer: 
Explanation:
The unbalanced equation is

Balancing this equation, we get:
