The chemical equation given is:
<span>2x(g) ⇄ y(g)+z(s)</span>
Answer: the higher the amount of x(g) the more the forward reacton will occur and the higher the amounts of products y(g) and z(s) will be obtained at equilibrium.
Justification:
As Le Chatellier's priciple states, any change in a system in equilibrium will be compensated to restablish the equilibrium.
The higher the amount, and so the concentration, of X(g), the more the forward reaction will proceed to deal witht he high concentration of X(g), leading to an increase on the concentration of the products y(g) and z (s).
Answer:
How many grams of potassium chloride, KCl, must be dissolved in 500.0 mL of solution to produce a 1.5 M solution? Answer: g 4. What is the molarity of a solution in which 84.0 grams of sodium chloride, NaCl, is dissolved in 1.25 liters of solution? Answer: M 5.
Explanation:
Answer:
74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.
Explanation:
The balanced reaction is:
Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- Ca(NO₃)₂: 1 mole
- CaCO₃: 1 mole
- NaNO₃: 2 mole
Being the molar mass of the compounds:
- Na₂CO₃: 106 g/mole
- Ca(NO₃)₂: 164 g/mole
- CaCO₃: 100 g/mole
- NaNO₃: 85 g/mole
then by stoichiometry the following quantities of mass participate in the reaction:
- Na₂CO₃: 1 mole* 106 g/mole= 106 g
- Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
- CaCO₃: 1 mole* 100 g/mole= 100 g
- NaNO₃: 2 mole* 85 g/mole= 170 g
You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of CaCO₃?

mass of CaCO₃= 74.81 grams
<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>
Answer:
Amount of heat energy released by light bulb = 25 joules
Explanation:
Given:
Energy receive by light bulb = 100 Joules
Energy released by light bulb as light energy = 75 Joules
Find:
Amount of heat energy released by light bulb
Computation:
We know that, energy is neither be created nor destroys
So,
Using Law of conservation of energy
Energy receive by light bulb = Energy released by light bulb as light energy + Amount of heat energy released by light bulb
100 = 75 + Amount of heat energy released by light bulb
Amount of heat energy released by light bulb = 100 - 75
Amount of heat energy released by light bulb = 25 joules