16x-7≤-71
Add 7 to both sides
16x≤-64
Divide both sides by 16
x≤ -4
Hope this helps! :)
Answer:
-51
Step-by-step explanation:
PEMDAS suggests you start with parenthesis
10+9•(-3)2-(7)
10-(27)2-(7)
10-54-7
-51
Find two points on the graph that the line crosses through almost perfectly. It looks like (1,10) and (9,1) will do.
Use them to compute the slope:
m = (1 - 10) / (9 - 1)
= -9/8
Then set up the "point-slope form":
y - y0 = m * (x - x0)
You choose some point (x0, y0) that the line crosses through. We already know the line passes through (1,10) pretty well, so let's use that.
x0 = 1
y0 = 10
Now finish plugging into the equation:
y - 10 = -9/8 * (x - 1)
The above equation will work fine for an answer, but let's go a step further and solve for y.
y - 10 = -9/8x + 9/8
y = -9/8x + 9/8 + 10
y = -9/8x + 9/8 + 80/8
y = -9/8x + (9 + 80)/8
y = -9/8x + 89/8
Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.
Using the mean concept, it is found that:
Relative to Sabrina's goal, her average swim time over the last five weeks is 0.1 hours.
-----------------------
The mean of a data-set is given by the <u>sum of all observations divided by the number of observations</u>.
In this problem:
- The data-set is her swim time relative to her goal, which is: {1.25, -1, 2.25, 0, -2.}
Thus, the mean is:

Relative to Sabrina's goal, her average swim time over the last five weeks is 0.1 hours.
A similar problem is given at brainly.com/question/24787716