Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
Answer:
#1 Exposition
#2 Background information
#3 Complication
this is right unless you're speaking of theme plot conflict climax falling action or conclusion
<span>Mass of the solution = 0.17m
Kb for C6H5NH2 = 3.8 x 10^-10
We know Ka for C6H5NH2 = 1.78x10^-11
We have Kw = Ka x Kb => Ka = Kw / Kb
=> (C2H5NH2)(H3O^+)/(C2H5NH3^+) => 1.78x10^-11 = K^2 / 0.17
K^2 = 3 x 10^-12 => K = 1.73 x 10^-6.
pH = -log(Kw(H3O^+)) = -log(1.73 x 10^-6) = 5.76</span>
Answer:
15
Explanation:
Because the ratio of copper in the solution is 15