Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Answer:
Explanation:
Gravitational law states that, the force of attraction or repulsion between two masses is directly proportional to the product of the two masses and inversely proportional to the square of their distance apart.
So,
Let the masses be M1 and M2,
F ∝ M1 × M2
Let the distance apart be R
F ∝ 1 / R²
Combining the two equation
F ∝ M1•M2 / R²
G is the constant of proportional and it is called gravitational constant
F = G•M1•M2 / R²
So, to increase the gravitational force, the masses to the object must be increased and the distance apart must be reduced.
So, option c is correct
C. Both objects have large masses and are close together.
this process is called parellelogram method of resolving vectors.