Answer:
12.3 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 894 Hz
fr = 926 Hz
c = 343 m/s
vs = 0 m/s
Find: vr
926 = 894 (343 + vr) / (343 + 0)
vr = 12.3
The speed of the car is 12.3 m/s.
Answer:
See below
Explanation:
F = ma
F = 12 * 9 = 108 N
108 N needed <u> add 30 N more east </u>
Answer:
The thinking distance depends on the reaction time of the driver which could can affected by alcohol, distractions and tiredness. A faster speed increases both thinking distance, increasing the total stopping distance.
<h2><em>
I hope this is helpful. Would appreciate if you add me as brainliest.</em></h2>
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,
- Charge on the second charged particle,
- Position of the first charge =
- Position of the second charge =
The electric field at a point due to a charge at a point distance away is given by
where,
- = Coulomb's constant, having value
- = position vector of the point where the electric field is to be found with respect to the position of the charge .
- = unit vector along .
The electric field at the origin due to first charge is given by
is the position vector of the origin with respect to the position of the first charge.
Assuming, are the units vectors along x and y axes respectively.
Using these values,
The electric field at the origin due to the second charge is given by
is the position vector of the origin with respect to the position of the second charge.
Using these values,
The net electric field at the origin due to both the charges is given by
Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.