Answer:
MM = 5,521.54 g/mol
Explanation:
To solve this, we need to use the expression for osmotic pressure which is the following:
π = MRT (1)
Where:
M: Concentration of the solution
R: gas constant (0.082 L atm/ mol K
T: temperature in K
25 °C in Kelvin is: 25 + 273.15 = 298.15 K
Now, we do not have the concentration of the solution, but we do have the mass. and the concentration can be expressed in terms of mass, molar mass and volume:
Concentration (M) is:
M = n/V (2)
and n (moles) is:
n = m/MM (3)
Therefore, if we replace (2) and (3) in (1) we have:
π = mRT/V*MM
Solving for MM we have:
MM = mRT/πV (4)
All we have to do now, is replace the given data and we should get the value of the molar mass:
MM = 6.143 * 0.082 * 298.15 / 0.1 * 0.272
MM = 150.1859 / 0.0272
<em>MM = 5,521.54 g/mol</em>
<em>This is the molar mass.</em>
Answer: Gravity depends on two main factors.
Explanation: Those factors are mass and distance. I hope this helps!
Answer: Cell components encompass phagocytic cells, epithelial and endothelial cells, natural killer cells, innate lymphoid cells, and platelets.
Explanation: Although it is ancient, the innate immune system is highly complex and consists of barriers to infection (epithelia of skin, gastrointestinal, respiratory, genitourinary tracts), antimicrobial peptides and proteins, humoral components (i.e. complement and opsonins) and cellular components (i.e. neutrophils, monocytes).
The answer is clearly the option <span>A, because in the Urey/Miller experiment, they simulated Earth's early atmosphere and they simulated the lightning as electrodes, to see if single compounds or amino acids would form. Hope this is useful</span>