<span>through friction between her feet and the carpet </span>
Answer:
a) V ≈ 125 m/s; b) Δt = 13.24 s; c) ΔS ≈ 1450 m
Explanation:
a) We have just to calculate the vector resultant.
V² = 106² + 66.2²
V² = 15618.44
V ≈ 125 m/s
b) The time of flight is equal to the time to reach the maximum height summed to the time to reach the land.
In vertical:
V = V₀ + a * t
V = 66.2 - g * t
0 = 66.2 - 9.8 * t
t ≈ 6.76 s
So: Δt = 13.24 s
c) In horizontal:
V = ΔS / Δt
106 = ΔS / 13.52 ⇒ ΔS = 106 * 13.52
ΔS = 106 * 13.52
ΔS = 1433,12
ΔS ≈ 1450 m
Its about momentum. Momentum (p)=mass(m)xvelocity(v)
So for the first ball P=4x8=32kgm/s
For the second the momentum is zero as it is still.
So overall momentum its 32kgm/s
Momentum has to be conserved
After the collision the momentum of the 4kg ball is 4x4.8=19.2kgm/s
As momentum is conserved 32-19.2=12.8kgm/s remaining
So rearrange for velocity so v=p/m=12.8/1=12.8m/s for the 1kg ball