Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ
Answer:
<h2>
False</h2>
Explanation:
Hope this helps! Please consider marking brainliest! Always remember, your smart and you got this! -Alycia :)
Answer:
The time taken by the duck to cross the lake is, t= 4 s
Explanation:
Given data,
The initial speed of the ducks, u = 3 m/s
The final speed of the ducks, v = 7 m/s
The acceleration of the duck, a = 1 m/s²
The formula for the acceleration is,
a = (v - u) / t
∴ t = (v - u) / a
Substituting the given values in the above equation,
t = (7 - 3) / 1
= 4 s
Hence, the time taken by the duck to cross the lake is, t= 4 s
Answer:
It corresponds to a distance of 100 parsecs away from Earth.
Explanation:
The angle due to the change in position of a nearby object against the background stars it is known as parallax.
It is defined in a analytic way as it follows:

Where d is the distance to the star.
(1)
Equation (1) can be rewritten in terms of d:
(2)
Equation (2) represents the distance in a unit known as parsec (pc).
The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).
For the case of (
):


Hence, it corresponds to a distance of 100 parsecs away from Earth.
<em>Summary:</em>
Notice how a small parallax angle means that the object is farther away.
Key terms:
Parsec: Parallax of arc second
(a) The gas of interstellar medium can be detected from the radiations of photons of wavelength 21 cm.
(b) The gas of interstellar medium can be detected from the absorption lines present in the light from distant stars, which must be caused by a medium of density and temperature other than that of the stars emitting the lights.
<h3>
What is interstellar medium?</h3>
Interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy.
<h3>Evidence that interstellar medium contains both gas and dust</h3>
- The gas of interstellar medium can be detected from the radiations of photons of wavelength 21 cm.
- The gas of interstellar medium can be detected from the absorption lines present in the light from distant stars, which must be caused by a medium of density and temperature other than that of the stars emitting the lights.
Learn more about interstellar medium here: brainly.com/question/4173326
#SPJ11