The piece of unknown metal is in thermal equilibrium with water such that Q of metal is equal to Q of the water. We write this equality as follows:
-Qm = Qw
Mass of metal (Cm)(ΔT) = Mass of water (Cw) (ΔT)
where C is the specific heat capacities of the materials.
We calculate as follows:
-(Mass of metal (Cm)(ΔT)) = Mass of water (Cw) (ΔT)
-68.6 (Cm)(52.1 - 100) = 42 (4.184) (52.1 - 20)
Cm = 1.717 -----> OPTION C
It creates
<span>THE HALOGENATION OF ALKENES</span>
Answer:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O
2NO(g) + O₂(g) → 2 NO₂
Explanation:
First of all, we need to consider the reaction for production of ammonia. In this reaction we have as reactants, nitrogen and hydroge.
3H₂ (g) + N₂(g) → 2NH₃ (g)
Afterwards, ammonia reacts to oxygen, to produce NO and H₂O
The equation for the process will be:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O
Then, we take the nitric oxide to make it react, to produce NO₂, in order to produce nitric acid, for the final reaction:
2NO(g) + O₂(g) → 2 NO₂
3NO₂(g) + H₂O(g) → 2 HNO₃ (g) + NO(g)
Products are copper+ aluminium chloride
reactants are aluminium+copper chloride
Answer:
In covalent bonding, the octet rule is important because sharing electrons gives both atoms a full valence shell. As a result, each atom can consider the shared electrons to be part of its own valence shell.
np :)