Answer:
The volume of water measured is 10mL
Explanation:
Given;
Mass of mass of beaker and the water = 23.670 g
Mass of empty beaker = 13.712 g
Then, mass of water only = Total mass of of beaker and the water minus Mass of empty beaker
mass of water only = 23.670 g - 13.712 g = 9.958 g
Density = mass/volume
Given density of water = 0.9982071 g/mL
Density of water = Mass of water/ Volume of water
Then, Volume of water = Mass of water/Density of water
Volume of water = 9.958 g/0.9982071 g/mL
Volume of water = 9.975886 mL ≅ 10mL
Therefore, The volume of water measured is 10mL
<h3>
Answer:</h3>
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
<h3>
Explanation:</h3>
- Assuming the reaction is the reduction of CuO by H₂
- Then the balanced equation for the reaction is;
CuO(s) + H₂(g) → Cu(s) + H₂O(l)
- The equation shows the reducing property of hydrogen gas, such that hydrogen reduces metal oxides such as copper(ii)oxide to the respective metals.
- The law of conservation requires chemical equations to be balanced so as the mass of reactants will be equal to that of products.
- In this case; there is 1 copper atom, 1 oxygen atom and 2 hydrogen atoms on both side of the equation and thus the equation is balanced.
Answer: Option (C) is the correct answer.
Explanation:
Movement of particles in a substance is responsible for change in state of the substance or matter.
This means that more is the motion of particles more will be their kinetic energy.
Also, kinetic energy is directly proportional to temperature.
K.E =
So, less is the temperature of an object or substance less will be be the motion of its particles. Therefore, molecules will come closer to each other and state of substance will change from liquid to solid.
Thus, we can conclude that the motion of the molecules would decrease at a molecular level if a liquid is placed in cool conditions.
Answer:
39.99711 grams.
Explanation:
Moles to Grams Naoh
1 mole is equal to 1 moles NaOH, or 39.99711 grams.
I think the answer is b because that is true