You would also need to know the mol of sodium. After knowing the mol, write down the reaction;
Na + H20 -> NaOH + H2
Use the mol ratio, to find the amount of mol of sodium hydroxide. (Remember to balance the equation first)
After you have the necessary variables, use the following formula:
mass of sodium hydroxide = mol of sodium hydroxide x molar mass (relative/formula mass of sodium hydroxide)
That is how you will find the mass of sodium hydroxide.
Answer:The acid is strong because it has a calculated K of 7.76x10*
Climate is one of the factors that determines where different species of plants and animals can live, so paleontologists look for clues to a location's ancient climate in the types of fossil plants and animals they find there. For example, no modern crocodile species lives in a climate with long periods of freezing temperatures, so scientists hypothesize that ancient crocodiles had the same requirement for year round warmth. That leads them to consider the 110-million-year-old crocodile fossils from the Washington, D.C. to be part of a large body of circumstantial evidence that temperatures there were warm year round during the Early Cretaceous. Similarly, coal beds and fossil trees in the Arctic Slope of Alaska are among the many clues that Alaskan temperatures were very warm during the Late Cretaceous.
The formula of compound is LiClO4.3H2O
<em><u>calculation</u></em>
- <em><u> </u></em>find the mole of each element
that is moles for Li,Cl,O and that of H2O
- moles = % composition/ molar mass
For Li = 4.330/ 6.94 g/mol= 0.624 moles
Cl=22.10/35.5=0.623 moles
39.89/16 g/mol =2.493 moles
H20= 33.69/18 g/mol= 1.872 moles
- find the mole ratio by dividing each moles by smallest number of mole ( 0.624 moles)
that is for Li= 0.624/0.623= 1
Cl= 0.623/0.623=1
O = 2.493/0.623 =4
H2O= 1.872/0.623=3
<h3>Therefore the formula=LiClO4.3H2O</h3><h3 />
Magnesium(?)
<span>2 HCl + Mg ? MgCl2 + H2</span>