Recall that the diagonals of a rectangle bisect each other and are congruent, therefore:

Substituting the given expression for each segment in the first equation, we get:

Solving the above equation for x, we get:

Substituting x=10 in the equation for segment EI, we get:

Therefore:

Now, to determine the measure of angle IEH, we notice that:

therefore,

Using the facts that the triangles are right triangles and that the interior angles of a triangle add up to 180° we get:

<h2>Answer: </h2>