Answer:
the brightest found are Blue - White with
Explanation:
The energy emission of objects increases with their temperature, specifically Wien described the process in an expression
T = 2,898 10⁻³
With this expression we can find the temperature of the stars by the color they emit.
Specifically the Sun has a color of 550 nm which corresponds to 5400K
bright stars have a BLUE color corresponding to 7500K
the brightest found are Blue - White with a temperature of 20000K
Answer:
51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7cm
Explanation:
The number of maxima appearing when the mirror M moves through distance \Delta L is given as follows,

Here,
= is the distance moved by the mirror M
is the wavelenght of the light used.
= 0.017m



Therefore, 51793 bright-dark-bright fringe shifts are observed when the mirror M2 moves through 1.7
Answer:
x=0.53
Explanation:
Using Gauss law the field is uniform so
E=ζ/ε
Charge densities ⇒ζ=1.
ε=8.85

Force of charge is


So finally knowing the acceleration and the time the distance can be find using equation of uniform motion

Answer:
v = 87.57 m/s
Explanation:
Given,
The initial velocity of the car, u = 0
The final velocity of the car, v = 60 mi/hr
The time period of car, t = 8 s
= 0.00222 hr
The acceleration of the car is given by the formula,
a = (v -u) / t
= 60 / 0.00222
= 27027 mi/hr²
If the car has initial velocity, u = 50 mi/hr
The time period of the car, t = 5.0 s
= 0.00139 hr
Using first equations of motion
<em> v = u + at</em>
= 50 + (0.00139 x 27027)
= 87.57 mi/hr
Hence, the final velocity of the car, v = 87.57 mi/hr