Answer:
28.79%
Explanation:
Given
Design Speed, V = 120km/h = 33.33m/s
Radius, R = 300m
Side Friction, Fs = 0.09
Gravitational Constant = 9.8m/s²
Using the following formula, we'll solve the required rate of superelevation.
e + Fs = V²/gR where e = rate
e = V²/gR - Fs
e = (33.33)²/(9.8 * 300) - 0.09
e = 0.287853367346938
e = 28.79%
Hence, the required rate of superelevation for the curve is calculated as 28.79%
Answer:
The molar mass of a compound tells you the mass of one mole of that substance. In other words, it tells you the number of grams per mole of a compound.
The quantity of matter in a body regardless of its volume or of any forces acting on it.
Most of the elements are metals
Answer:
13.309 m/s²
Explanation:
Length from shoulder to hand, l = 30 cm = 0.3 m
initial velocity, u = 1 m/s
final velocity, v = 2.5 m/s
time, t = 3 s
Let the tangential acceleration is a.
by using first equation of motion
v = u + at
2.5 = 1 + 3 a
a = 0.5 m/s²
Let the centripetal acceleration is a'.
a' = v'²/l
a' = 2 x 2 / 0.3
a' = 13.3 m/s²
The tangential acceleration and the centripetal acceleration are both perpendicular to each other. So, the net acceleration is given by


A = 13.309 m/s²