Answer:
Car 1
Explanation:
The steering column which moves the least is less likely to to the driver's chest ordinarily. Driver tends to remain in motion until restrained. Assuming a seat belt not airbag
Generally one would compute a vector find direction and distance. This is like solving for a hypotenuse / in a right angled triangle problem. On face value the column moving the least is safer. The 6/24 would hit the upper chest, face, or possibly break the neck.
hence, car 1 moved 3 cm upward and 2 cm rearward is safer.
<span>The mass of Avogadro's number of Carbon-12 atoms, which exactly equals 12.000</span>
To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.
PART A)

Here,
M = Mass of Earth
R = Distance from center to the satellite
Replacing with our values we have,



PART B) The period of satellite is given as,




PART C) The gravitational force on the satellite is given by,




A) the sound waves were pushed closer together
According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.