Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
Answer:

Explanation:
Δ
- Δ
is the difference in velocity before and after a given time.
is the acceleration of the object during this time.
is time
is another way to write this equation.
- The Δ symbol represents "the difference between the initial and final values of a magnitude or vector", so Δ


- I rearranged this equation to solve for
, but this is a step that you don't need to take, it's just good to get in the habit of doing this. - Plug in the given values. Note that our final velocity is
, because the car travels until at <em>rest</em>.
![a=\frac{v_f-v_i}{t}\\a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_f-v_i%7D%7Bt%7D%5C%5Ca%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D)
- Our initial velocity is in mph, something not in standard units, so if not changed, you will get an incorrect answer. What you need to do is cancel out the units your prior value had using division and multiplication, and at the same time multiply and divide the correct numbers and units into your equation. Or look up a converter.
![a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}\\a=\frac{0m/s-7.6m/s}{9.7s} \\a=\frac{-7.6m/s}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D%5C%5Ca%3D%5Cfrac%7B0m%2Fs-7.6m%2Fs%7D%7B9.7s%7D%20%5C%5Ca%3D%5Cfrac%7B-7.6m%2Fs%7D%7B9.7s%7D)
- if you converted correctly, your answer for
will be ≅
. - Now divide. Notice that the units for acceleration are
or <em>meters per second, per second</em>.

- Our final answer is <em>negative </em>because the car is <em>slowing down</em>. Do not square this answer as the square symbol only applies to the units, not the magnitude.
The least count is the smallest unit of measurement which an instrument can take accurately
Answer:
r = 1.45 Å
Explanation:
given,
λ = 1.436 Å
θ = 20.62°
d = a
n = 2
metal gold crystallizes in a face centered cubic unit cell
Radius of the gold atom = ?
using Bragg's Law
n λ = 2 d sin θ
2 x 1.436 Å = 2 a sin 20.62°
a = 4.077 Å
We know relation of radius for face centered cubic unit cell


r = 1.45 Å
the radius of a(n) gold atom. is equal to 1.45 Å