Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
ΒγΕ the answer should be a hot day
Solution :
The relationship between the strength of magnetic field and the radiusof a charged particle's path is obtained through Newton's second law, which is given by :
F = ma
F = qvB and 
Substituting these values in the second law of Newton,

Now solving for B, we get:


= 0.261 T
The field strength can be obtained by using the technology of today.
When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal but opposite force. Neither you nor the wall will move. Forces that cause a change in the motion of an object are unbalanced forces.
The question is incomplete. You dis not provide values for A and B. Here is the complete question
Light in the air is incident at an angle to a surface of (12.0 + A) degrees on a piece of glass with an index of refraction of (1.10 + (B/100)). What is the angle between the surface and the light ray once in the glass? Give your answer in degrees and rounded to three significant figures.
A = 12
B = 18
Answer:
18.5⁰
Explanation:
Angle of incidence i = 12.0 + A
A = 12
= 12.0 + 12
= 14
Refractive index u = 1.10 + B/100
= 1.10 + 18/100
= 1.10 + 0.18
= 1.28
We then find the angle of refraction index u
u = sine i / sin r
u = sine24/sinr
1.28 = sine 24 / sine r
1.28Sine r = sin24
1.28 sine r = 0.4067
Sine r = 0.4067/1.28
r = sine^-1(0.317)
r = 18.481
= 18.5⁰