Answer:
ΔE = 150 J
Explanation:
From first law of thermodynamics, we know that;
ΔE = q + w
Where;
ΔE is change in internal energy
q is total amount of heat energy going in or coming out
w is total amount of work expended or received
From the question, the system receives 575 J of heat. Thus, q = +575 J
Also, we are told that the system delivered 425 J of work. Thus, w = -425 J since work was expended.
Thus;
ΔE = 575 + (-425)
ΔE = 575 - 425
ΔE = 150 J
I The answer is 42 cubic cm
For any spontaneous process, universe entropy intensifies is known as the second law of thermodynamics.
<h3>What is entropy?</h3>
Entropy is defined as the degree of randomness or disorderliness of a system.
The entropy of a system generally increases for any spontaneous process.
This is according to the second law of thermodynamics.
In conclusion, the entropy of a system is the a measure of randomness of the system.
Learn more about entropy at: brainly.com/question/21578229
#SPJ1
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.