Answer:
Bulk matter can exist in three states: gas, liquid, and solid. Gases have the lowest density of the three, are highly compressible, and fill their containers completely
Explanation:
Please mark as brainliest
Explanation:
it is the one you have selected because it is the only solid one
Answer:
pH = 7.8
Explanation:
The Henderson-Hasselbalch equation may be used to solve the problem:
pH = pKa + log([A⁻] / [HA])
The solution of concentration 0.001 M is a formal concentration, which means that it is the sum of the concentrations of the different forms of the acid. In order to find the concentration of the deprotonated form, the following equation is used:
[HA] + [A⁻] = 0.001 M
[A⁻] = 0.001 M - 0.0002 M = 0.0008 M
The values can then be substituted into the Henderson-Hasselbalch equation:
pH = 7.2 + log(0.0008M/0.0002M) = 7.8
It blocks ACh release so the muscle cannot contract
Answer:
i) increase
ii) decrease
iii) remain the same
iv) No, because it dissociates completely.
Explanation:
On a 10-fold dilution of a weak acid, the pH will increase because the concentration of hydrogen ions will decrease thereby increasing the pH to close to that of water.
On a 10-fold dilution of a weak base, the pH will decrease due to the removal of hydroxide ions from the solution. This results in the solution having a H closer to that of water.
If one adds a very small amount of strong base to a buffered solution, the pH will remain constant because a buffer solution acts to withstand any change to its pH on the addition of small quantities of either an acid or a base.
A buffer solution cannot be made with a strong acid because thy undergo complete dissociation. Therefore, any small addition of base or acid will result in very large changes in the pH of the solution. A buffer solution is made with a weak acid and its conjugate base or a weak base and its conjugate acid.