Answer:
Uncorrected values for
For circuit P
R = 2.4 ohm
For circuit Q
R = 2.4 ohm
Corrected values
for circuit P
R = 12 OHM
For circuit Q
R = 2.3 ohm
Explanation:
Given data:
Ammeter resistance 0.10 ohms
Resister resistance 3.0 ohms
Voltmeter read 6 volts
ammeter reads 2.5 amp
UNCORRECTED VALUES FOR
1) circuit P
we know that IR =V

2) circuit Q
R = 2.4 ohm as no potential drop across ammeter
CORRECTED VALUES FOR
1) circuit p
IR = V

R= 12 ohm
2) circuit Q


R = 2.3 ohm
Answer:
4 m/
Explanation:
From Equilibrium of forces, The Tension in string is cancelled by the Weight (product of mass and acceleration due to gravity) of the body acting downwards.
The Net force = Mass * Acceleration.
Since Net Force = 20 Newton, Mass = 5kg, therefore;
20 = 5kg * acceleration. Dividing the RHS and LHS of the equation by 5, we have;
Acceleration =
which gives 4.
Note: RHS means Right Hand Side.
LHS means Left Hand Side.
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:
Thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Explanation:
From the concept of Escape Velocity, derived from Newton's Law of Gravitation, definition of Work, Work-Energy Theorem and Principle of Energy Conservation, which is the minimum speed such that rocket can overcome gravitational forces exerted by the Earth, and according to the Tsiolkovski's Rocket Equation, which states that thrust done by the rocket is equal to the change in linear momentum of the rocket itself, we conclude that thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.