W=mg
W=75(1.6)
W=120N
a. 120N
<span>The change in internal energy is only gravitional PE because the tube is being drug up at a constant speed. Since it is at a constant speed, the change in KE is 0.
Change in PE = m*g*h = 78 kg * 10 m/s^2 * 30 m = 23400 J
Work done on the system is from the force
Work = force * distance = 350 N * 120 m = 42000 J
So, work added 42000 J to the system, but the rider's energy only increased 23400 J. Therefore, friction took up the difference. Friction is where the thermal energy comes from
Q = 42000 J - 23400 J = 18600 J.
Therfore, friction generated 18600 J of heat to the surroundings.</span>
Answer:
a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19
b) b=2T on the electron moving in the magnetic field
Hope this helps! If in need of clarification, feel free to ask :)
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm