The answer is d because you have to make sure that everything is right
I would say option D, it depends on the size of the star
Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Answer:
+ 140
Explanation:
You can show the natural growth rate by subtracting the death rate from the birth rate during one year and converting this into a percentage.
Here it would be:
240 - 100 = + 140
// if you want to convert it to percentage, you need to know the size of the population
it would be
140 / (population size) * 100 %
Not 100% sire but I think it'd be Yellow since we see red and green light together as Yellow