A is the correct answer !!!
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622
Answer:
147.456077993 Hz
Explanation:
= Frequency of the sonar = 22 kHz
= Velocity of the whale = 4.95 m/s
v = Speed of sound in water = 1482 m/s
The difference in frequency is given by

The difference in frequency is 147.456077993 Hz
Answer:
400 trips
Explanation:
Mechanical energy needed to climb 14 m by a man of 68 kg
= mgh
= 68 x 9.8 x 14
= 9330 J
1 Kg of fat releases 3.77 x 10⁷ J of energy
.45 kg of fat releases 1.6965 x 10⁷ J of energy
22% is converted into mechanical energy
so 22% of 1.6965 x 10⁷ J
= 3732.3 x 10³ J of mechanical energy will be available for mechanical work.
one trip of climbing of 14 m requires 9330 J of mechanical energy
no of such trip possible with given mechanical energy
= 3732.3 x 10³ / 9330
= 400 trips
Q: ken, 0.75 kg, moves toward a wall (his path normal to the wall) at 52 m/s. 13.0 ms after he touches the wall he pushes himself off in the opposite direction at 60 m/s. What is the magnitude of the average force the wall exerts on Ken during this rapid maneuver
Answer:
-6461.54 N
Explanation:
From Newton's Fundamental equation,
F = m(v-u)/t.................... Equation 1
Where F = Force exerted in sonic, m = mass of ken, v = final velocity, u = initial velocity, t = time.
Given: m = 0.75 kg, v = - 60 m/s (opposite direction), u = 52 m/s, t = 13 ms = 0.013 s
Substitute into equation 1
F = 0.75(-60-52)/0.013
F = 0.75(-112)/0.013
F = -84/0.013
F = -6461.54 N
Note: The negative sign tells that the force act in opposite direction to the initial motion of ken.
Hence the magnitude of the average force of the wall = -6461.54 N