Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
Answer:
-10.8°, or 10.8° below the +x axis
Explanation:
The x component of the resultant vector is:
x = 3.14 cos(30.0°) + 2.71 cos(-60.0°)
x = 4.07
The y component of the resultant vector is:
y = 3.14 sin(30.0°) + 2.71 sin(-60.0°)
y = -0.777
Therefore, the angle between the resultant vector and the +x axis is:
θ = atan(y / x)
θ = atan(-0.777 / 4.07)
θ = -10.8°
The angle is -10.8°, or 10.8° below the +x axis.
In the mid of the 19th century the miasma theory was replaced by the germ theory of diseases (Maia 2013) The Greek physician Hippocrates (c.460- 377 B.C.E) believed that bad air could be the cause of any pestilences, the fatal epidemic.
Hope that helps!
Answer:
C) amplitude
Explanation:
"The amplitude is a measure of the strength or intensity of the wave. For example, when looking at a sound wave, the amplitude will measure the loudness of the sound. The energy of the wave also varies in direct proportion to the amplitude of the wave."-Ducksters
Answer:
Mass of Jupiter = 4.173×10^15kg
Explanation:
Using Kepler's 3rd law, it states that the orbital period T is related to the distance,r as:
T^2 = GM/4 pi × r^3
Where G = universal gravitational constant
r = radius
M = masd of jupiter
Rearranging the formular to make M the subject of formular
T^2 × 4 pi = G M × r^3
(T^2 × 4 pi) / (G× r^3) = M
(1.24^2 × 4 × 3.142) /(6.672×10^-11)(4.11×10^8)^3
M = 19.32 /6.672×10^-11)(4.11×10^8)^3
M = 19.32 / 4.63 ×10^15
M = 4.173×10^15kg