Answer:
the no. of ejected electrons per second will increase.
Explanation:
In photoelectric effect, when a light is incident on a metal surface it ejects some electrons from the metal surface. The energy of photon of light must be equal to or greater than the work function of that metal. All the extra energy above the work potential appears as the kinetic energy of the ejected electrons. So, greater he energy of photon greater will be the kinetic energy of the ejected electrons.
A single photon interacts with a single electron and ejects it only if its energy is greater than work function. So, the increase in no. of photons per second means an increase in the intensity of laser beam. And greater no. of photons, will interact with greater no. of electrons. So, <u>the no. of ejected electrons per second will increase.</u>
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
The correct field line would be A.
Answer:
Both, potential energy and kinetic energy depends on mass. The higher the mass, the higher the energy. However, the difference is that potential energy depends on vertical height whereas kinetic energy depends on the velocity.
Explanation:
From the formula we can see that;
Potential Energy = mass* gravitational acceleration *vertical height.
Kinetic Energy = 0.5 * mass * (velocity)^2