In physical chemistry, the terms body-centered cubic (BCC) and face-centered cubic (FCC) refer to the cubic crystal system of a solid. Each solid is made up simple building blocks called lattice units. There are different layouts of a lattice unit.
It is better understood using 3-D models shown in the picture. A BCC unit cell has one lattice point in the center, together with eight corner atoms which represents 1/8 of an atom. Therefore, there are 1+ 8(1/8) = 2 atoms in a BCC unit cell. On the other hand, a FCC unit cell is composed of half of an atom in each of its faces and 1/8 of an atom in its corners. Therefore, there are (1/2)6 + (1/8)8 = 4 atoms in a FCC unit cell.
If you are stationary, but in/on a moving vehicle/object you can be at rest and moving at then same time.
<u>Explanation</u>:
- A particle, when viewed from a given frame of reference, cannot be both at rest and in motion. However, in one frame of reference, a particle can be in motion whereas in another frame of reference the particle is in motion.
- For example, if you are seated in a plane, the plane is stationary in that reference frame and the Earth moves under it, but in the reference frame of the Earth, the plane is moving concerning the Earth. When you are standing still on Earth, in your frame of reference, the Earth is stationary, and the Sun and stars move around the Earth.
- However, in the frame of reference of the center of our solar system, the Earth orbits the Sun and the Sun are perturb slightly by the rest of the planets, but the rest of the galaxy orbits our solar system. Of course, in rest from our Galaxy, our solar system orbits a giant black hole at its center.
Answer:
Explanation:
Given
mass of squirrel 
Surface area of squirrel 
and the area which face 
height of tree 
Coefficient of drag 
drag Force 
Terminal velocity is given





(b)Mass of person 





Answer:
Acceleration: 
Explanation:
The acceleration of an object is equal to the rate of change of velocity:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
For the space probe in this problem, we have:
u = 100 ft/s (initial velocity)
v = 5000 ft/s (final velocity)
t = 0.5 s (time taken)
Therefore, the acceleration is
