Answer: Fe<em>(aq)</em>+S<em>(aq)</em>=FeS<em>(s)</em>
Explanation: The Sodium and Bromine are spectator ions because they don't react with anything, you can see this by writing the ionic equation like so:
1.) Molecular formula (given): FeBr2 (aq)+Na2S (aq)= FeS(s)+2NaBr(aq)
Each dissolved FeBr2 breaks up into one Fe with a charge of 2+ and two Br with a negative charge. This gives you:
Fe(aq)+ 2Br(aq)+Na2S(aq)=FeS(s)+2NaBr
2.) Now repeat what was shown with the other compounds in the given molecular formula, and pay attention to the states that each ion is in (solid, liquid, aqueous, gas) because this will give you the ionic equation, which from there you can get rid of any ions that don't change amount or state.
3.) Ionic formula: Fe(aq)+ <u>2Br(aq)</u>+<u>2 Na(aq)</u>+S (aq)=FeS(s)+<u>2 Na(aq)+2Br(aq)</u>
4.)When you've derived a total ionic equation (above), you'll find that some ions appear on both sides of the equation in equal numbers. For example, in this case two Na cations and two Br anions appear on both sides of the total ionic equation. What does this mean? It means these ions don't participate in the chemical reaction. They're present before and after the reaction. Nothing happens to them. So those are removed and you're left with the net ionic: Fe(aq)+S(aq)=FeS(s)
Hope this helps :)
Answer:
Nitrogen has 5 valence electrons
Explanation:
nitrogen has it's attoms form triple bonds which are very hard to break
so non-reactive
Answer : The work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Explanation :
(a) At constant volume condition the entropy change of the gas is:
We know that,
The relation between the for an ideal gas are :
As we are given :
Now we have to calculate the entropy change of the gas.
(b) As we know that, the work done for isochoric (constant volume) is equal to zero.
(C) Heat during the process will be,
Therefore, the work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Answer:
0.0100M of AgNO3 contains 0.0100M of Ag+
Explanation:
AgNO3 when ionized yields Ag+ and NO3-. This means that the amount of AgNO3 in solution is equivalent to the amount of Ag+ and NO3- in that same solution.
1M of AgNO3 solution produces 1M of Ag+
1M of AgNO3 solution produces 1M of NO3-
This occurs because of the complete ionization of AgNO3 in solution, allowing complete dissolution of the compound.