Answer:
0.56 liters
Explanation:
First we <u>convert 0.80 grams of O₂ into moles</u>, using its molar mass:
- 0.80 g ÷ 32 g/mol = 0.025 mol
At STP, 1 mol of any given mass occupies 22.4 L. With that information in mind we <u>calculate the volume that 0.025 moles of O₂ gas would occupy</u>:
- 0.025 mol * 22.4 L/mol = 0.56 L
Thus the answer is 0.56 liters.
M(dextrose) = 50 g.
V(solution) = 1 L.
n(dextrose) = 50 g ÷ 180 g/mol.
n(dextrose) = 0,27 mol.
Osmotic concentration (osmolarity)<span> is a measure of how many </span><span>osmoles of particles of solute</span><span> it contains </span>per liter.
The osmolarity = n(dextrose) ÷ V(solution).
The osmolarity = 0,27 mol ÷ 1 L.
The osmolarity = 0,27 mol/L · 1000 mmol/m.
The osmolarity (dextrose) = 270 mosm/L.
The osmolarity (dextrose monohydrate) = 50 g÷197 g/mol·1000 =254mosm/L
Answer:
My chemistry teacher from my sophomore year.
Explanation:
I took class online last year and he was an older teacher and really didn't know how to use a computer. I asked for help multiple times and he would tell me to look the answer up. I would watch countless videos and still wouldn't understand. He ended up failing me that year and I had summer school. To this day, I dislike chemistry because of him.
Answer:To solve for time, divide the distance traveled by the rate. For example, if Cole drives his car 45 km per hour and travels a total of 225 km, then he traveled for 225/45 = 5 hours.
Explanation: