There is no (gap) in time between the action and the reaction
hope that helps:)
The force that must be exerted on the outside wheel to lift the anchor at constant speed is 6.925 x 10⁵ N.
<h3>Force exerted outside the wheel</h3>
The force exerted on the outside of the wheel can be determined by applying the principle of conservation of angular momentum as shown below.
∑τ = 0
- Let the distance traveled by the load = 1.5 m
- Let the radius of the wheel or position of the force = 0.45 m
∑τ = R(mg) - r(F)
rF = R(mg)
0.45F = 1.5(21,200 x 9.8)
F = 6.925 x 10⁵ N.
Thus, the force that must be exerted on the outside wheel to lift the anchor at constant speed is 6.925 x 10⁵ N.
Learn more about angular momentum here: brainly.com/question/7538238
An old president, horse and carriage probably. a recent one, car.
The answer is <span>b. 6.1 times as long
</span>
Step 1: Calculate the time <span>it takes objects to reach a speed on the Moon.
</span>Step 2: Calculate the time it takes objects to reach a speed on the Earth.
Step 3. Divide the time on the Moon by the time on the Earth.
Use the formula: v2 = v1 + at
v2 - the final velocity
v1 - the initial velocity
a - gravitational acceleration
t - time
Step 1.
Moon:
<span>v1 = 0 (because it is free fall)
v2 = 10 m/s
a = 1.6 m/s</span>²
t = ?
______
v2 = v1 + at
10 = 0 + 1.6t
10 = 1.6t
t = 10/1.6
t = 6.25 s
Step 2.
Earth:
v1 = 0 (because it is free fall)
v2 = 10 m/s
a = 9.81 m/s²
t = ?
______
v2 = v1 + at
10 = 0 + 9.81t
10 = 9.81t
t = 10/9.81
t = 1.02 s
Step 3:
6.25 s / 1.02 s = 6.1 s
Answer:
The correct answer is the number 4. A wave on a pond is a mechanical wave which requires a medium to travel.
Explanation:
Mechanical waves are those that need a material medium to propagate. The waves of the sea and the waves that we produce on a guitar string, the sound, are examples of mechanical waves. Electromagnetic waves are energetic pulses capable of propagating in a vacuum. This way, a wave on a pond is a mechanical wave which requires a medium to travel.