(a) The work done by the force applied by the tractor is 79,968.47 J.
(b) The work done by the frictional force on the tractor is 55,977.93 J.
(c) The total work done by all the forces is 23,990.54 J.
<h3>
Work done by the applied force</h3>
The work done by the force applied by the tractor is calculated as follows;
W = Fd cosθ
W = (5000 x 20) x cos(36.9)
W = 79,968.47 J
<h3>Work done by frictional force</h3>
W = Ffd cosθ
W = (3500 x 20) x cos(36.9)
W = 55,977.93 J
<h3>Net work done by all the forces on the tractor</h3>
W(net) = work done by applied force - work done by friction force
W(net) = 79,968.47 J - 55,977.93 J
W(net) = 23,990.54 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).
Explanation:
Hi there!
The equation for the velocity of an object thrown upward is the following:
v = v0 + g · t
Where:
v = velocity of the ball.
v0 = initial velocity.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
t = time.
To find the velocity of the ball at t = 0.40 s, we have to replace "t" by 0.40 s in the equation:
v = v0 + g · t
v = 3.0 m/s - 9.8 m/s² · 0.40 s
v = -0.92 m/s
The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).
You can use mostly anything as long as it is circular. Depending on how big it is, you could use sturdy paper plates and use a stick/rod and tape to hold it together, or you could use bottle caps if the car you are trying to make is really small.