Answer:
c. decarboxylation of an a-keto acid.
Explanation:
Decarboxylation refers to the removal of the carboxyl group from a carboxylic acid and thus releasing carbon dioxide. Decarboxylases are enzymes that speed up the removal of the carboxyl group from acids. These reactants could be amino acids, alpha-keto acids, and beta-keto acids. Biotin is known to catalyze the decarboxylation of malonyl CoA to acetyl CoA during fatty acid synthesis.
Malonyl CoA is converted to acetyl CoA after decarboxylation assisted by biotin also known as Vitamin H. Alpha keto acids are involved in fatty acids synthesis and Malonyl CoA is an alpha-keto acid because the keto group is located in the first carbon near the carboxylic acid group. Keto acids have both a carboxyl group and a ketone group.
Should be their masses. Because t<span>he strength of the gravitational force between two objects depends on two factors, mass and </span>distance<span>. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.</span>
Let MM(x) be the molar mass of x.
MM(Pb) : MM(PbO)
=207.21 : 223.20 = 451.4 g : x g
cross multiply and solve for x
x=223.2/207.21*451.4
= 486.23 g
Percentage yield = 365.0/486.23= 0.75067 = 75.07% (rounded to 4 sign. fig.)
We have seasons on earth because of the way the earth is tilt on its axis. at a certain time in the year, the sun's rays reach certain parts of the globe more than others.
some places have 4 seasons because they are in the northern hemisphere, which is in the sweet spot of the sun's rays that give us each season. other places only have 1 or 2 because they are not in the northern hemisphere.
Answer:
The answer is C) The temperature at which the solid-state turns into liquid
Explanation:
The melting point of a substance is the temperature at which it shifts state from solid to liquid. At the melting point, the solid and liquid levels exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change. This occurs when the internal energy of the solid increases, commonly by the application of heat or pressure, which increases the substance's temperature to the melting point.