I think this is the right order.
1.Make an observation
2.Ask a question
3.Develop a hypothesis
4.Experiment or test idea
5.Analyze data
6.Develop a theory
7.Draw conclusions
Answer:
D
Explanation:
descriptive, because scientists are writing down the observations but not making comparisons.
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²
Answer:
v = 1.32 10² m
Explanation:
In this case we are going to use the universal gravitation equation and Newton's second law
F = G m M / r²
F = m a
In this case the acceleration is centripetal
a = v² / r
The force is given by the gravitational force
G m M / r² = m v² / r
G M/r = v²
Let's calculate the mass of the planet
M = v² r / G
M = (1.75 10⁴)² 5.00 10⁶ / 6.67 10⁻¹¹
M = 2.30 10²¹ kg
With this die we clear the equation to find the orbit of the second satellite
v = √ G M / r
v = √ (6.67 10⁻¹¹ 2.30 10²¹ / 8.75 10⁶)
v = 1.32 10² m