Answer:
Elastic Collision
Inelastic Collision
The total kinetic energy is conserved. The total kinetic energy of the bodies at the beginning and the end of the collision is different.
Momentum does not change. Momentum changes.
No conversion of energy takes place. Kinetic energy is changed into other energy such as sound or heat energy.
Highly unlikely in the real world as there is almost always a change in energy. This is the normal form of collision in the real world.
An example of this can be swinging balls or a spacecraft flying near a planet but not getting affected by its gravity in the end.
I believe the answer is potential difference
Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
The three properties of electromagnetic waves are; they travel at the speed of light, they include ultraviolet waves, and they can transfer energy through empty space.
<h2>Further Explanation</h2><h3>A wave</h3>
- A wave is a transmission of a disturbance. It involves transmission of energy from one point which is the source to another point.
- Waves may be classified depending on the need for a transmission medium or based on the vibration of particles relative to the direction of wave motion.
- Waves may be either transverse or longitudinal based on the direction of wave motion relative to the vibration of particles
- Additionally waves may be classified as either electromagnetic wave or mechanical based on the need for a transmission medium.
<h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- All waves of the electromagnetic spectrum are electromagnetic transverse waves that do not require a material medium for transmission.
- They include; radio waves, microwaves, infrared, visible light, ultra-violet, x-rays, and gamma rays.
- All waves of the electromagnetic spectrum travel with a speed of light, 3.0 x10^8 m/s.
- Additionally, electromagnetic waves possess energy that is given by; E = hf; where h is the plank's constant and f is the frequency.
keywords: Wave, electromagnetic wave, electromagnetic spectrum
<h2>Learn more about: </h2>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum
Sub-topic: Properties of an electromagnetic waves
The answer is letter B. XD