The electric field strength of a point charge is inversely proportional to the square of the distance from the charge ... a lot like gravity.
If the magnitude of the field is (2E) at the distance 'd', then at the distance '2d', it'll be (2E)/(2²). That's (2E)/4 = 0.5E .
There are multiple reasons for this. First of all, water is available in almost every place on the Earth. It doesn't pollute the air, doesn't cause health use and is easily handle.
Other factor is the fact that water has a really high specific heat. This means that water, and more specifically steam, can aborb and transport more energy. A lower heat capacity would imply the need to boil more of the liquid to obtain the same amount of energy. This combine with the fact that water expands at a large rate when boiling, combine with everything mentioned previously, and you get a liquid with all the characteristics that a efficient turbine requires to work.
<span>When the Sun’s energy moves through space, it reaches Earth’s atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet’s systems in three ways: by radiation, conduction, and convection</span>
Answer:
Explanation:
a ) starting from rest , so u = o and initial kinetic energy = 0 .
Let mass of the skier = m
Kinetic energy gained = potential energy lost
= mgh = mg l sinθ
= m x 9.8 x 70 x sin 30
= 343 m
Total kinetic energy at the base = 343 m + 0 = 343 m .
b )
In this case initial kinetic energy = 1/2 m v²
= .5 x m x 2.5²
= 3.125 m
Total kinetic energy at the base
= 3.125 m + 343 m
= 346.125 m
c ) It is not surprising as energy gained due to gravitational force by the earth is enormous . So component of energy gained due to gravitational force far exceeds the initial kinetic energy . Still in a competitive event , the fractional initial kinetic energy may be the deciding factor .
What is the question is it some type of science thing