Answer:
load (l)=400N
Effort(E)=50N
mechanical advantage (MA)= load ÷Effort
(ma)=400÷50
(ma)=8
Explanation:
I copy pasted from the answer from the same question. Remember to first check if ur question is there
1. For the first one if it doesn't shatter then it is hard.
2. We sould consider that room temperature is usuall<span>y from 18°C (64°F) to 23°C (73°F) and since the melting point of the substance is 40˚C the substance is liquid, because is melting point not an evaporation point it just melts from solid to liquid.
3. Well, in this one we have to consider that a chemical change it change the thing completely. So in this case is baking a cake because the products make the cake stop being them self and created something else.
4. It tends to have low reactivity. This is because viscosity means something like honey very sticky<span> ,</span> density is how hard it is and lastly the conductivity I would believe is to pass electricity or current.
5. It is a physical change because the evaporated water transforms again into water and then fall as rain, snow or ice.
Hope it helped <3</span>
<span>6.20 m/s^2
The rocket is being accelerated towards the earth by gravity which has a value of 9.8 m/s^2. Given the total mass of the rocket, the gravitational drag will be
9.8 m/s^2 * 5.00 x 10^5 kg = 4.9 x 10^6 kg m/s^2 = 4.9 x 10^6 N
Add in the atmospheric drag and you get
4.90 x 10^6 N + 4.50 x 10^6 N = 9.4 x 10^6 N
Now subtract that total drag from the thrust available.
1.250 x 10^7 - 9.4 x 10^6 = 12.50 x 10^6 - 9.4 x 10^6 = 3.10 x 10^6 N
So we have an effective thrust of 3.10 x 10^6 N working against a mass of 5.00 x 10^5 kg. We also have N which is (kg m)/s^2 and kg. The unit we wish to end up with is m/s^2 so that indicates we need to divide the thrust by the mass. So
3.10 x 10^6 (kg m)/s^2 / 5.00 x 10^5 kg = 0.62 x 10^1 m/s^2 = 6.2 m/s^2
Since we have only 3 significant figures in our data, the answer is 6.20 m/s^2</span>
B. Frequency remains unchanged because the energy in a photon is E=hf. So if the frequency changes so does the energy and that doesn't happen to EM waves entering a medium by the conservation of energy
Answer: The magnitude of the velocity = 2/5 m/s
Explanation:
In this question, the magnitude of the velocity is the product of the magnitude of the displacement vector and the magnitude of the component of the velocity that acts in the direction of displacement.
This will be a scalar projection of V onto X
Please find the attached files for the solution