Answer:
The mass of 0.02 m³ of gold is 386 kilograms
Explanation:
Given:
The density of the gold = 19300 kg/m³.
The volume of gold = 0.02 m³
To Find:
The mass of gold = ?
Solution:
We know that density is mass divided per unit volume.
Thus mathematically
Density = \frac{mass}{volume}Density=
volume
mass
Rewriting in terms of mass ,
Mass = density * volume
On substituting the known values
Mass = 19300 kg/m³ * 0.02 m³
Mass = 386 kilograms
Learn more about Mass and Density:
Mass=?,volume=190,density=4
Mass 350 kg volume 175 density ans
This is not my answer I copied it but hope it helps:)
Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.
Answer:
2 m/s²
Explanation:
If changes speed by 2 meters per second each second means:
2 m/s²
Because it changes constantly it veloctity.
Remember the aceleration changes the velocity.
I Think Its True My Dude Or Dudette
.
Hope this helps
.
Zane
The moon does not have its own light.