Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer:
a) a = - 0.106 m/s^2 (←)
b) T = 12215.1064 N
Explanation:
If
F₁ = 9*1350 N = 12150 N (→)
F₂ = 9*1365 N = 12285 N (←)
∑Fx = M*a = (M₁ +M₂)*a (→)
F₁ - F₂ = (M₁ +M₂)*a
→ a = (F₁ - F₂) / (M₁ +M₂ ) = (12150-12285)N/(9*68+9*73)Kg
→ a = - 0.106 m/s^2 (←)
(b) What is the tension in the section of rope between the teams?
If we apply ∑Fx = M*a for the team 1
F₁ - T = - M₁*a ⇒ T = F₁ + M₁*a
⇒ T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
If we choose the team 2 we get
- F₂ + T = - M₂*a ⇒ T = F₂ - M₂*a
⇒ T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached
Answer:
0.02
Explanation:
coefficient of kinetic friction = μ
force of friction = Ff
Normal Force = FN, but
FN = -W
Ff = -μFN
so μ = Ff/FN
= 4N/200N
= 0.02.