Answer:
Species distribution
Explanation:
Species dispersion patterns—or distribution patterns—refer to how the individuals in a population are distributed in space at a given time. The individual organisms that make up a population can be more or less equally spaced.
It would <span>keep rolling without slowing down if no friction acted upon it.
</span>
Answer:
<em>60008.4 J</em>
<em></em>
Explanation:
The mass of each kid = 30 kg
mass of the cart = 20 kg
The speed of the cart down the hill = 30 km/hr = 30 x 1000/3600 = 8.33 m/s
The height of the hill = 80 m
The potential energy of the boys at the top of the hill = mgh
where
m is the total mass of the kids and the cart = (30 x 2) + 20 = 80 kg
g is the acceleration due to gravity = 9.81 m/s^2
h is their height above the ground = 80 m (on the top of the hill)
substituting, we have
potential energy PE = 80 x 9.81 x 80 = 62784 J
At an instance at the bottom of the hill
their kinetic energy = 
where
v is their velocity = 8.33 m/s
m is their total mass = 80 kg
substituting, we have
kinetic energy KE =
= 2775.6 J
Total work done on the cart is equal to the energy lost by the cart when it reached the bottom of the hill
work done by friction = PE - KE = 62784 - 2775.6 = <em>60008.4 J</em>
Answer:
Using two to three sentences, summarize what you investigated and observed in this lab. I investigated that Most of my planets and moons had the element carbon in them. I observed that Different elements absorb different wavelengths of light.
Astronomers use a wide variety of technology to explore space and the electromagnetic spectrum; why do you believe it is essential to use many types of equipment when studying space?
It is essential to use a number of telescopes sensitive to different parts of the electromagnetic spectrum to study objects in space. Even though all light is fundamentally the same thing, the way that astronomers observe light depends on the portion of the spectrum they wish to study. Tools are useful, such as detectors that help see the different wavelengths of light. Not all light can get through the Earth's atmosphere, so for some wavelengths we have to use telescopes aboard satellites.
If carbon was the most common element found in the moons and planets, what element is missing that would make them similar to Earth? Explain why. (Hint: Think about the carbon cycle.)
The missing element that would make moons and other planets similar to earth is oxygen. The two make carbon dioxide.
We know that the electromagnetic spectrum uses wavelengths and frequencies to determine a lot about outer space. How does it help us find out the make-up of stars?
electromagnetic radiation Explanation, astronomers observe the wavelengths by putting telescopes on mountain tops and take results of what they are seeing
Why might it be useful to determine the elements that a planet or moon is made up of?
It might be useful so we can make new discoveries of life or even plants on other planets and moons. And discover maybe even more moons one other planets.
Hope this helps!!!!
Explanation:
Answer:
I am sure the awnser to this is
B. vibrate