Answer:
Hope it helped
Explanation:
For neutral atoms, the number of valence electrons is equal to the atom's main group number. The main group number for an element can be found from its column on the periodic table. For example, carbon is in group 4 and has 4 valence electrons. Oxygen is in group 6 and has 6 valence electrons.
ΔSsys and ΔSsurr both have values larger than 0.
<h3>Entropy Change: What Is It?</h3>
- Entropy change is a phenomena that measures the evolution of randomness or disorder in a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work.
- More unpredictability in a thermodynamic system indicates high entropy.
- Heat transport (delta Q) divided by temperature equals the change in entropy (delta S).
<h3>What causes variations in entropy?</h3>
- When a substance is divided into several pieces, entropy rises.
- Because the solute particles are split apart when a solution is generated, the dissolving process increases entropy.
- As the temperature rises, entropy increases.
learn more about entropy change here
brainly.com/question/6364271
#SPJ4
Answer:
D
Excess solar radiation due to a missing magnetic field.
Explanation: Solar proton events (SPEs) are bursts of energetic protons accelerated by the Sun. They occur relatively rarely and can produce extremely high radiation levels. Without thick shielding, SPEs are sufficiently strong to cause acute radiation poisoning and death.
Hope this hels
plz mark brainliest
I believe the density p1 is greater than the density p2 .
Since the liquid are at equilibrium in the the open U-tube, the pressure at which the liquids meet should be the same. That is at the position where they are in contact, the pressure that liquid 1 exerts at that point is the same as the pressure exerted by liquid 2 at the point.
Answer: decrease the temperature of the reaction
Explanation:
CH3COOH + CH3CH2OH ⇌ CH3COOCH2CH3 + H2O
The formation of an ester is an exothermic reaction. Therefore, a decrease in the temperature of the reaction will favour the production of ester.