For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
It would move either left or right
Explanation: Taking assumption that,
Fructose + ATP fructose - 6 - phosphate + ADP (The standard free energy of hydrolysis for fructose-6-phosphate is - 15.9 kJ/mol.) 3 - phosphoglycerate + ATP 1,3 - bisphosphoglycerate + ADP (The standard free energy of hydrolysis for 1,3-bisphosphoglycerate is - 4 9.3 kJ/mol.) pyruvate + ATP phosphoenolpyruvate + ADP (The standard free energy of hydrolysis for phosphoenolpyruvate -is -61.9 kJ/mol.)