1. Answer:
1.0 × 10–9 M OH–
Explanation:
pH = -Log[H+]
pOH = -Log[OH-]
But;
pH + pOH = 14
Therefore;
[H+] + [OH-] = 1.0 × 10^-14 M
Therefore;
[OH-] = 1.0 × 10^-14 M - (1.0 × 10^–5 M)
= 1.0 × 10^-9 M OH–
2. Answer;
pH = 7.28
Explanation;
pH = -Log[H3O+]
Given;
[H3O+] = 5.2 × 10^–8 M
Therefore;
pH = - log [5.2 × 10^–8 M]
= 7.28
The pH is 7.28
Lead is an E (element) and can be found on the periodic table.
Answer:
Assuming that all of the oxygen is used up, 1.53×4111.53×411 or 0.556 moles of C2H3Br3 are required. Because there are only 0.286 moles of C2H3Br3 available, C2H3Br3 is the limiting reagent.
Limiting Reagent What is the limiting reagent if 76.4 grams of C2H3Br3 were reacted with 49.1 grams of O2? C2H3Br3 + 11O2 → 8CO2 + 6H2O + 6Br2 SOLUTION Using Approach 1: A. 76.4g × (1 mol/ 266.72 g) = 0.286 moles C2H3Br3 49.1g × (1 mole/ 32 g) = 1.53 moles O2 B.
Explanation:
MRK ME BRAINLIEST PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Introductory_Chemistry_(Tro)/08%3A_Quantities_in_Chemical_Reactions/8.04%3A_Limiting_Reactant_and_Theoretical_Yield
Answer:

Explanation:
The<em> energy of a photon</em>, E, can be calculated with the Planck-Einstein equation:

Where:
- h is Planck's constant 6.626×10⁻³⁴ J.s, and
- f is the frequency of the photon or electromagnetic radiation.
Substituting with your data:

Now multiply by Avogadro's number to obtain the energy of one mole of photons:

The compound is Al2O3. The ratio of aluminum to oxygen is 2:3.