Answer:
I'm sorry, you didn't post the pictures.
Answer:
There are four laws of thermodynamics that define fundamental physical quantities (temperature, energy, and entropy) and that characterize thermodynamic systems at thermal equilibrium.
Explanation:
Answer:
Option B
Explanation:
- For Option A the state is not changing but just has different look now.
- For Option B the state is changing from gas to liquid drops due to cold glass
- For Option C it hasn't changed state as both corn and flower is solid
- For Option D paper and ash are both solids
Therefore our answer must be Option B
Answer:
2KClO3 —> 2KCl + 3O2
The coefficients are 2, 2, 3
Explanation:
From the question given above, we obtained the following equation:
KClO3 —> 2KCl + 3O2
The above equation can be balance as follow:
There are 2 atoms of K on the right side and 1 atom on the left side. It can be balance by putting 2 in front of KClO3 as shown below:
2KClO3 —> 2KCl + 3O2
Now, the equation is balanced.
Thus, the coefficients are 2, 2, 3
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M