Answer : The correct answer for a) 4-bromo-2-iodo-4-methyl pentane and b)5-bromo-2-ethoxy-2-methyl pentane.
A) Reaction with NaI :
Reaction of alkyl halide with NaI is known as Finkelstein Reaction . The acetone is used as solvent . It involves bimolecular nucleophillic substitution rmechanism (SN²) . There is replecement of one halogen with other occurs .
The incoming Nucleophile(Nu⁻) (halide) attacks on carbon from back side , while the leaving group (halide) leaves the compound from front side , simultaneously. The product so formed have is inverted .(Image)
NaI releases I⁻ ion which act as nucelophile and attacks on C1 carbon and Br⁻ from C1 carbon is released . Out of two bromines at C1 and C4 carbons , C1 is primary carbon which is less sterically hindered while C-4 is tertiary carbon and sterically hindered . So it is easy for incoming Nu⁻ to attack on C1 carbon .So Br⁻ is repleaced by I⁻.
1,4-dibromo-4-methylpentane + NaI → 4-bromo-1-iodo-4-methylpentane
The product formed from reaction between 1,4-dibromo-4-methylpentane and NaI is 4-bromo-1-iodo-4-methylpentane . (Image)
B) Reaction with AgNO3 :
Reaction of alkyl halide with AgNO3 in ethanol takes place via SN¹ ( unimolecular nucleophilic substitution ) mechanism . In this leaving group(halide) leaves from alkyl halide forming an intermediate carbocation species . The incoming Nu⁻ attack on this carbocation.
AgNO3 reacts releases Ag⁺ion which abstract Br⁻ of C-4 carbon from 1,4-dibromo-4-methylpentane. THis forms tertiary carbocation which is more stable than carbocation formed by removal of Br from C-1 . The ethanol being more Nucleophilic than NO₃⁻ (from AgNO₃), attacks on this carbocation .(Image )
The product formed as a result is 5-bromo-2-ethoxy-2-methyl pentane.
Time, Ice size, water temp
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is .
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.
Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply by 2 on reactant side. Also, multiply by 2 on product side. Hence, the equation can be rewritten as follows.
Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is .
Gold has 79 protons on the periodic table