Answer: B -Network solids
Ionic solids are held by positive and negative charged ions bonded by electrostatic forces. The electrostatic force is much stronger than dipole–dipole interactions, London dispersion forces, hydrogen bonding.
Molecular solids are held by dipole–dipole interactions, London dispersion forces, or hydrogen bonds. Benzene is an example of this. These inter-molecular force are much weaker than electrostatic force.
The metallic bonds are much weaker than electrostatic force. Similarly, in non-metallic solids the atoms are held by covalent bonds. These covalent bonds are weaker than the electrostatic force.
Thus we can conclude that electrostatic force is the strongest when compared to dipole–dipole interactions, London dispersion forces, hydrogen bonding,covalent and metallic bonds. Thus ionic solids will have the highest melting point as more energy is required to break the ionic bonds as this is the strongest bond compared to the other bonds.
I would say #3 I’m sorry if it’s wrong tho
Answer:
Pressure = 4313.43mmHg
Explanation:
P1 = ?
V1 = 0.335L
V2 = 1700mL =1700*10^-3L = 1.7L
P2 = 850mmhg
From Boyle's law, the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature remains constant.
P = k / v
K = pv. P1V1 = P2V2 = P3V3 =........=PnVn
P1V1 = P2V2
Solve for P1,
P1 = (P2*V2) / V1
P1 = (850 * 1.7) / 0.335
P1 = 4313.43mmHg
The pressure of the gas was 4313.43mmHg
Answer:
4) transferred from the valence shell of one atom to the valence shell of another atom
Explanation:
Electrons are located outside of the nucleus which contains the protons and the neutrons.
For bonds to form, valence electrons located in the outermost shell electrons are involved. These are the valence electrons. These outer shell electrons can be shared or transferred between two combining atoms to form stable atoms.
In ionic bonds, the electrons are transferred from one specie to another. The atom that loses the electrons becomes positively charged and the receiving atom becomes negatively charged. This is the crux of ionic bonds.