Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°
Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns
Answer:
When the air pressure in the throat and outside the body is less than the air pressure in the middle ear, barotrauma occurs.
Explanation:
Ear barotrauma is a medical condition that describes discomfort in the ear which is caused by pressure differences in the inner and outer ear drum.
Usually, the air pressure in the middle ear is the same as the air pressure in the throat and outside the body.
When we swallow, the eustachian tube opens up and air flows out of and into the middle ear, this balances the pressure. But if the eustachian tube is blocked, the air pressure in the throat and outer body become different from the air pressure in the middle ear.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !
The minimum speed of the particle is the Speed of light in glass is c/μ=2×108m/s.
<h3>Why is the refractive index important?</h3>
The higher the refractive index the slower the light travels, which causes a correspondingly increased change in the direction of the light within the material. What this means for lenses is that a higher refractive index material can bend the light more and allow the profile of the lens to be lower.
Refractive index values are usually determined at standard temperature. A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium.
To learn more about the refractive index visit the link
brainly.com/question/23750645
#SPJ4