Explanation:
1. Force=mass*acceleration
acceleration=force/mass
=100/50
=2m/s^2
2. Gravitational force for downward acceleration= mg-ma=m(g-a) , since a is less than g,
So it will be= 50(9.8-2)
=50(7.8)= 390N
Answer:
Without any external forces a moving object will continue to move in a straight line. The gravitational force between the two objects will provide the centripetal force to keep the objects moving around one another.
1. satellite in orbit around the earth (motion of earth is negligible)
2. moon in orbit around the earth (center of motion several thousand miles
from center of earth)
3. earth in orbit around sun (center of rotation close to center of sun)
4. binary stars (if masses of stars are equal center of rotation is in middle)
Answer and Explanation:
Hydrostatic equilibrium is the condition in which force is balance that is upward force and downward force the downward force is due to gravitational force and the upward force is due to the pressure. The Sun is said to be in hydrostatic equilibrium means the force acting on it is balance means upward force which is due to pressure is same as the force exerted by gravitation.
Different:
1. number of moons
2. size of rings
3. mass
4. temperature
5. type of rings
i might be wrong though.
Answer:
the tension in the part of the cord attached to the textbook is 7.4989 N
Explanation:
Given the data in the question;
As illustrated in the image below;
first we determine the value of the acceleration,
along vertical direction; we use the second equation of motion;
y = ut +
a
t²
we substitute;
0 m/s for u, 1.29 m for y, 0.850 s for t,
1.29 = 0×0.850 +
×a
×(0.850)²
1.29 = 0.36125a
a
= 1.29 / 0.36125
a
= 3.5709 m/s²
Now when the text book is moving with acceleration , the dynamic equation will be;
T₁ = m₁a
where m₁ is the mass of the text book ( 2.10 kg )
a
is the vertical acceleration ( 3.5709 m/s² )
so we substitute
T₁ = 2.10 × 3.5709
T₁ = 7.4989 N
Therefore, the tension in the part of the cord attached to the textbook is 7.4989 N