Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer:
B.C. D. G.
Explanation:
A vector quantity, has both magnitude and direction. A tip to remember is if you can add a direction to it! You wouldnt say 30 pounds north, but you would say 30 mph north.
<em>I hope this helped! Comment if you have any questions! :)</em>
Answer:
a) 4.40 s
b) 2.20 s
Explanation:
Given parameters are:
At constant power ,
initial speed of the car, 
final speed of the car,
mph
At full power,
initial speed of the car, 
final speed of the car,
mph
a)
At constant power, 
At full power, 
So 
So, time to reach 64 mph speed is 4 times more than the initial time
s
b)

For final 64 mph speed,
=
s