Throw it sideways and try to make it spin around but it needs to be thrown high up then it should kinda glide down
the answer is rust so the answer is rust
Answer:
Of longitudinal waves
Explanation:
Depending on the direction of the oscillation, there are two types of waves:
- Transverse waves: in a transverse wave, the oscillations occur perpendicularly to the direction of propagation of the wave. Examples are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the oscillations occur parallel to the direction of propagation of the wave. In such a wave, the oscillations are produced by alternating regions of higher density of particles, called compressions, and regions of lower density of particles, called rarefactions. Examples of longitudinal waves are sound waves.
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Answer:
because it gives a complete thought