Answer and Explanation:
This can be explained as in Rutherford's model of atom the electrons orbits the nucleus which means that they will travel around the nucleus with some velocity and hence radiate electromagnetic waves which results in the loss of energy due to which the electron keeps coming closer and eventually falls into the nucleus.
But Bohr came up with a better explanation as according to the Bohr's atomic model, electrons stay fixed in orbit with certain energy in different shells around the nucleus and can only jump from an energy level to another if that specific amount of energy is supplied to it.
This model is based on the quantization of energy thus giving an explanation why electrons do not fall into the nucleus of an atom.
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
21.28 m
Explanation:
height, h = 71 m
velocity of raft, v = 5.6 m/s
let the time taken by the stone to reach to raft is t.
use second equation of motion for stone
u = 0 m/s, h = 71 m, g = 9.8 m/s^2
71 = 0 + 0.5 x 9.8 x t^2
t = 3.8 s
Horizontal distance traveled by the raft in time t
d = v x t = 5.6 x 3.8 = 21.28 m
The answer is to this question D