We know that in a collision the momentum is conserved, that is:
![\vec{p}_0=\vec{p}_f](https://tex.z-dn.net/?f=%5Cvec%7Bp%7D_0%3D%5Cvec%7Bp%7D_f)
Since this is vector equation we can divide it in two scalar equations, one for x and for y. Then we have:
![\begin{gathered} p_{0x}=p_{fx} \\ \text{and} \\ p_{0y}=p_{fy} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20p_%7B0x%7D%3Dp_%7Bfx%7D%20%5C%5C%20%5Ctext%7Band%7D%20%5C%5C%20p_%7B0y%7D%3Dp_%7Bfy%7D%20%5Cend%7Bgathered%7D)
Then we have for the x direction:
![\begin{gathered} 5.4m=m(2.6)\cos 36.9+1.26mv_o\cos \phi \\ 5.4=2.6\cos 36.9+1.26v_o\cos \phi \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%205.4m%3Dm%282.6%29%5Ccos%2036.9%2B1.26mv_o%5Ccos%20%5Cphi%20%5C%5C%205.4%3D2.6%5Ccos%2036.9%2B1.26v_o%5Ccos%20%5Cphi%20%5Cend%7Bgathered%7D)
and for the y direction:
![\begin{gathered} 0=-m2.6\sin 36.9+1.6mv_o\sin \phi \\ 2.6\sin 36.9=1.6v_o\sin \phi \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%200%3D-m2.6%5Csin%2036.9%2B1.6mv_o%5Csin%20%5Cphi%20%5C%5C%202.6%5Csin%2036.9%3D1.6v_o%5Csin%20%5Cphi%20%5Cend%7Bgathered%7D)
Hence, we have the system of equations:
![\begin{gathered} 5.4=2.6\cos 36.9+1.26v_o\cos \phi \\ 2.6\sin 36.9=1.6v_o\sin \phi \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%205.4%3D2.6%5Ccos%2036.9%2B1.26v_o%5Ccos%20%5Cphi%20%5C%5C%202.6%5Csin%2036.9%3D1.6v_o%5Csin%20%5Cphi%20%5Cend%7Bgathered%7D)
From the second equation we have:
![v_o=\frac{2.6\sin 36.9}{1.6\sin \phi}](https://tex.z-dn.net/?f=v_o%3D%5Cfrac%7B2.6%5Csin%2036.9%7D%7B1.6%5Csin%20%5Cphi%7D)
Plugging this in the first equation:
![\begin{gathered} 5.4=2.6\cos 36.9+1.26(\frac{2.6\sin36.9}{1.6\sin\phi})\cos \phi \\ 1.26(\frac{2.6\sin36.9}{1.6})\tan \phi=5.4-2.6\cos 36.9 \\ \tan \phi=\frac{1.6(5.4-2.6\cos 36.9)}{(1.26)(2.6\sin 36.9)} \\ \phi=\tan ^{-1}(\frac{1.6(5.4-2.6\cos36.9)}{(1.26)(2.6\sin36.9)}) \\ \phi=69.69 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%205.4%3D2.6%5Ccos%2036.9%2B1.26%28%5Cfrac%7B2.6%5Csin36.9%7D%7B1.6%5Csin%5Cphi%7D%29%5Ccos%20%5Cphi%20%5C%5C%201.26%28%5Cfrac%7B2.6%5Csin36.9%7D%7B1.6%7D%29%5Ctan%20%5Cphi%3D5.4-2.6%5Ccos%2036.9%20%5C%5C%20%5Ctan%20%5Cphi%3D%5Cfrac%7B1.6%285.4-2.6%5Ccos%2036.9%29%7D%7B%281.26%29%282.6%5Csin%2036.9%29%7D%20%5C%5C%20%5Cphi%3D%5Ctan%20%5E%7B-1%7D%28%5Cfrac%7B1.6%285.4-2.6%5Ccos36.9%29%7D%7B%281.26%29%282.6%5Csin36.9%29%7D%29%20%5C%5C%20%5Cphi%3D69.69%20%5Cend%7Bgathered%7D)
Now that we know the value of the angle we plug it in the expression for the velocity, then we have:
![\begin{gathered} v_o=\frac{2.6\sin 36.9}{1.6\sin 69.69} \\ v_0=1.04 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_o%3D%5Cfrac%7B2.6%5Csin%2036.9%7D%7B1.6%5Csin%2069.69%7D%20%5C%5C%20v_0%3D1.04%20%5Cend%7Bgathered%7D)
Therefore, the magnitude of the final speed of the orange ball is 1.04 m/s and the direction is 69.69°