This question is incomplete the complete question is
A diver bounces straight up from a diving board, avoiding the diving board on the way down, and falls feet first into a pool. She starts with a velocity of 4.00 m/s and her takeoff point is 1.80 m above the pool. (a) What is her highest point above the board? (b) How long a time are her feet in the air? (c) What is her velocity when her feet hit the water?
Answer:
(a) Xs=0.459m
(b) t=0.984 s
(c) Vc=6.65 m/s
Explanation:
(a) To reach maximum distance

(b) For Time
To find t we must find t1 and t2
as
t=t1+t2
For T1

For T2

For Total Time
t=t1+t2
t=0.306+0.6789
t=0.984s
(c) To find Vc
Vc=Vb+gt2
Vc=(0)+(9.8)(0.6789)
Vc=6.65 m/s
Hello!
The best explanation is the new "experimental evidence", which occur with the help of new and improved technology. For this question, I suggest you to answer letter b).
Hugs!
Answer:
The average velocity of the sled is vavg = s/t.
Explanation:
Hi there!
The average velocity is calculated as the traveled distance over time:
vavg = Δx/Δt
Where:
vavg = average velocity.
Δx = traveled distance.
Δt = elapsed time.
We already know the traveled distance (s) and also know the time it takes the sled to travel that distance (t). Then, the average velocity can be calculated as follows:
vavg = s/t
Have a nice day!
Herz is a measurement for how many cycles of the wave occur per second, which in this case is 261. the period is the time it takes to complete 1 cycle, so if 261 cycles occur per second, one cycle occurs every 1/261 seconds
Answer:
(a) the observed frequency is 200 Hz
(b) the observed frequency is 188 Hz.
Explanation:
speed of the truck, Vs = 27 m/s
frequency of the truck as it approaches, Fs = 185 Hz
(a) Apply Doppler effect to determine the frequency you will hear.
As the truck approaches you, the observed frequency will be higher than the source frequency because of decrease in distance.
![F_s = F_o [\frac{V}{V_S + V} ]](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7BV%7D%7BV_S%20%2B%20V%7D%20%5D)
Where;
Fo is the observed frequency which is the frequency you will hear.
V is speed of sound in air

(b) Apply the following formula for a moving observer and a moving source;
](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29)
The observed frequency is negative since you are driving away from the truck and the source frequency is also negative since it is driving towards you.
\\\\F_o = 185[\frac{340-22}{340} ](\frac{340}{340-27} )\\\\F_o = 185(0.9353)(1.0863)\\\\F_o = 188 \ Hz](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%5B%5Cfrac%7B340-22%7D%7B340%7D%20%5D%28%5Cfrac%7B340%7D%7B340-27%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%280.9353%29%281.0863%29%5C%5C%5C%5CF_o%20%3D%20188%20%5C%20Hz)